Discrete-Time Models for Implicit Port-Hamiltonian Systems

نویسندگان

  • Fernando Castaños
  • Hannah Michalska
  • Dmitry Gromov
  • Vincent Hayward
چکیده

Implicit representations of finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations (the system model is in a differential-algebraic equation form). Such representations lend themselves better to sample-data approximations. Given an implicit representation of a port-Hamiltonian system it is shown how to construct a sampled-data model that preserves the port-Hamiltonian (PH) structure under sample and hold. 1. Introduction. The class of Hamiltonian systems has a prominent role in many disciplines. It was recently extended in [6] to include open systems, i.e. systems that interact with the environment via a set of inputs and outputs (called ports), giving rise to port-Hamiltonian (PH) systems. Such extended models immediately reveal the passive properties of the underlying systems, making them particularly well suited for designing passivity-based control (PBC) laws. Two types of model representations of Hamiltonian systems are in widespread use: the explicit representation stated in the form of an ordinary differential equation (ODE) on an abstract manifold [28, 29, 25, 26] and the implicit representation stated in the form of a differential-algebraic equation (DAE) usually evolving in a Euclidean space [4]. While explicit representations are usually preferred in the context of analytical mechanics; see [1, 8, 19], the implicit DAEs models lend themselves better for numerical computations as they lead to simpler expressions for the Hamiltonian functions. The formal relations between the two representations and their equivalence can be established if the system's configuration space is regarded as an embedded submanifold of the Euclidean space; see [4] for a full development. Of principal interest here will be the construction of sampled-data (discrete-time) models of PH systems that best approximate their continuous-time counterparts. Sampled-data models are important in digital control implementations and permit for simpler design of PBC laws directly in discrete time. In this context, the notion of " best approximation " deserves clarification. For linear systems, exact sampled-data models can be constructed by requiring that the solutions of the sampled-data and continuous-time systems coincide at the discretization points. Point-wise model matching is usually impossible in the case of nonlinear systems short of explicit derivation of analytical expressions for their solutions. For general dynamic systems, it is thus the choice of an integration method for generating an approximate solution (like …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Construction of discrete-time models for port-controlled Hamiltonian systems with applications

The issues of constructing a discrete-time model for Hamiltonian systems are in general different from those for dissipative systems. We propose an algorithm for constructing an approximate discrete-time model, which guarantees Hamiltonian conservation. We show that the algorithm also preserves, in a weaker sense, the losslessness property of a class of port-controlled Hamiltonian systems. An a...

متن کامل

Implicit and explicit representations of continuous-time port-Hamiltonian systems

Implicit and explicit representations of smooth, finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations. Explicit representations are derived when ...

متن کامل

Discrete IDA-PBC Design for 2D Port-Hamiltonian Systems

We address the discrete-time passivity-based control laws synthesis within port-Hamiltonian framework. We focus on IDA-PBC design for canonical port-Hamiltonian systems with separable energy being quadratic in momentum. For this class of systems, we define a discrete Hamiltonian dynamics that exactly satisfies a discrete energy balance. We then derive a discrete controller following the IDA-PBC...

متن کامل

Discrete port-Hamiltonian systems

Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling at the discrete level itself. One of the goals of this paper is to model port-Hamiltonian systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.05097  شماره 

صفحات  -

تاریخ انتشار 2015